A numerical simulation and an experimental implementation of T‐shaped microstrip‐fed printed slot array antenna are presented in this paper. The proposed antenna with relative permittivity 4.3 and thickness 1.0mm is analyzed by the finite‐difference time‐domain (FDTD) method. A dual-band microstrip patch antenna (MPA) based on a polarization conversion metasurface structure was designed. By etching the complementary split ring resonator (CSRR) on the ground plane, a new resonance frequency is generated. The proposed antenna is obtained through optimizing the structural parameters of CSRR. Compared with the antenna without CSRR, the return loss of the proposed. Ultra-wideband antennas are critical sensors for microwave imaging. In this work, radiation performance of an antipodal Vivaldi antenna is enhanced by using a broadband metasurface lens structure in 1-6 GHz bandwidth. Radiation pattern for the lens integrated antenna is more directive due to electromagnetic properties of the metasurface lens.
Abstract

The metasurface concept has emerged as an advantageous reconfigurable antenna architecture for beam forming and wave-front shaping, with applications that include satellite and terrestrial communications, radar, imaging, and wireless power transfer. The metasurface antenna consists of an array of metamaterial elements distributed over an electrically large structure, each subwavelength in dimension and with subwavelength separation between elements. In the antenna configuration we consider, the metasurface is excited by the fields from an attached waveguide. Each metamaterial element can be modeled as a polarizable dipole that couples the waveguide mode to radiation modes. Distinct from the phased array and electronically-scanned-antenna architectures, a dynamic metasurface antenna does not require active phase shifters and amplifiers but rather achieves reconfigurability by shifting the resonance frequency of each individual metamaterial element. We derive the basic properties of a one-dimensional waveguide-fed metasurface antenna in the approximation in which the metamaterial elements do not perturb the waveguide mode and are noninteracting. We derive analytical approximations for the array factors of the one-dimensional antenna, including the effective polarizabilities needed for amplitude-only, phase-only, and binary constraints. Using full-wave numerical simulations, we confirm the analysis, modeling waveguides with slots or complementary metamaterial elements patterned into one of the surfaces.
7 More- Received 27 June 2017
Metasurface For Microstrip-fed Slot Antennas Antenna
DOI:https://doi.org/10.1103/PhysRevApplied.8.054048
Metasurface For Microstrip-fed Slot Antennas Ham Radio
© 2017 American Physical Society
Metasurface For Microstrip-fed Slot Antennas Long Range
Physics Subject Headings (PhySH)
